A preclinical model of acquired anti-PD-1 resistance is responsive to SEA-TGT, an effector-function
enhanced anti-TIGIT monoclonal antibody
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Background CT26.PD1R tumors display minor changes in Type | interferon (IFN-l) and MHC gene networks are SEA-TGT elicits antitumor activity alone and in
tumor-infiltrating leukocytes differentially regulated in CT26.PD1R tumors combination with aPD-1 in CT26.PD1R tumors
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* Immune checkpoint inhibitors (CPI) targeting the PD-(L)1 axis
induce robust antitumor immunity in a subset of patients with cancer.
However, challenges remain for patients who do not respond to or
experience disease progression after treatment with CPIs.
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* There is an interest in understanding whether immunomodulatory
agents targeting other immune checkpoints, such as SEA-TGT, an
investigational, nonfucosylated mADb directed to TIGIT with enhanced
Fc effector function, may elicit activity in patients with anti-PD-1
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