Background

- Tucatinib (TUC) is a potent, highly selective HER2-directed tyrosine kinase inhibitor approved in the US for treatment of patients with HER2+ metastatic breast cancer.
- Understanding potential drug-drug interactions (DDIs) is important to inform proper dosing when co-administering drugs.
- In vitro metabolism studies suggest that drug metabolizing enzymes CYP2C8 and CYP3A play a role in TUC metabolism.
- ONT-993 is the predominant metabolite of TUC, formed by CYP2C8 (Fig. 1).
- TUC exhibits competitive inhibition of CYP2C8, CYP2C9, CYP3A, and P-gp, and metabolism-dependent inactivation of CYP3A in vitro.

ONT-380-012 was a DDI study conducted to evaluate the magnitude of potential enzyme and transporter interactions for TUC (as a victim and perpetrator) and the safety of healthy volunteers when administered TUC doses at therapeutic levels (300 mg BID).

Tucatinib

ONT-993

Figure 1: Chemical structures of tucatinib and ONT-993

Clinical Study Methods

- **<u>Perpetrator</u>**: Drug that instigates the interaction, potentially impacting efficacy/safety due to victim drug.
- **Victim:** Drug whose PK is impacted by the interaction, potentially leading to efficacy/safety events
- ONT-380-012 was a Phase 1, open-label, fixed-sequence DDI study of tucatinib conducted in 5 parts.
 - Healthy volunteers (n=116) at two centers were enrolled in the study.
 - Parts A-C evaluated the effects of a strong CYP2C8 inhibitor (gemfibrozil), a strong CYP3A inhibitor (itraconazole, ITZ), and a CYP3A/CYP2C8 inducer (rifampin, RIF) on single-dose tucatinib (300 mg) PK.
 - Parts D and E assessed the effects of steady-state tucatinib (300 mg BID) on single-dose PK of substrate probes for CYP2C8 (repaglinide), CYP2C9 (tolbutamide), CYP3A (midazolam, MDZ), and P-gp (digoxin).
- Plasma samples were collected for PK analysis and drug concentrations were measured using validated LC-MS/MS methods.
- Safety outcome measures included incidence and severity of treatment-emergent adverse events (TEAEs), incidence of laboratory abnormalities based on hematology, clinical chemistry and urinalysis test results, electrocardiogram parameters, vital signs measurements and physical examinations.

Table 1: ONT-380-012 Study Demographics

Demographic Factor		Part A N=28	Part B N=28	Part C N=28	Part D N=17	Part E N=13
Age (years)	Mean (SD)	43 (10)	41 (11)	47 (13)	42 (12)	40 (13)
	Range	24-62	23-57	22-65	24-59	24-60
Sex (%)	Male	22 (79)	24 (86)	23 (82)	14 (82)	10 (77)
	Female	6 (21)	4 (14)	5 (18)	3 (18)	3 (23)
Ethnicity (%)	Hispanic/ Latino	8 (29)	19 (68)	10 (36)	3 (18)	9 (69)
	Not Hispanic/ Latino	20 (71)	9 (32)	18 (64)	14 (82)	4 (31)
Race (%)	White	9 (32)	24 (86)	20 (71)	6 (35)	8 (62)
	Black/African American	17 (61)	4 (14)	8 (29)	10 (59)	5 (39)
	Asian	1 (3.6)				
	Other	1 (3.6)			1 (6)	

Clinical Study Methods, Cont.

B: Tucatinib as a Perpetrator

Blood samples were taken for the determination of analyte plasma concentrations for PK analysis. Intensive PK sampling was performed for tucatinib (Parts A-E), repaglinide (Part D), midazolam (Part D), tolbutamide (Part D), digoxin (Part E) and selected metabolites. Pre-dose blood samples were collected for trough plasma concentrations of itraconazole, rifampin, and gemfibrozil. Routine clinical and laboratory assessments were included in this DDI safety.

Figure 2: Clinical Study Schema for ONT-380-012, with tucatinib as a (A) victim and (B) perpetrator. All drugs were administered orally.

Impact of CYP3A and CYP2C8 Inhibitors/ Inducers on Tucatinib PK

Tucatinib is a CYP2C8 and CYP3A4 Substrate in Humans

Figure 3: Tucatinib plasma concentration profiles (A-C) and AUC_{inf} values (D-F) in the absence and presence of steadystate itraconazole (A,D), rifampin (B,E) or gemfibrozil (C,F).

Tucatinib Inhibits CYP3A, CYP2C8 and P-gp-mediated Elimination and is Impacted by CYP2C8 Inhibition in Healthy Volunteers

Ariel Topletz-Erickson¹, Anthony Lee¹, Hao Sun¹, JoAl Mayor¹, Luke Walker¹, Christopher J. Endres¹

¹Seattle Genetics, Inc., Bothell, WA

Impact of CYP3A and CYP2C8 Inhibitors/ Inducers on Tucatinib PK

- Tucatinib AUC_{inf} and C_{max} increased 3.04-fold and 1.62-fold in the presence of gemfibrozil, a strong CYP2C8 inhibitor.
 - The metabolite-to-parent AUC_{inf} ratio of ONT-993 also decreased from 0.18 to 0.05 in the presence of gemfibrozil, consistent with inhibition of CYP2C8mediatied metabolite formation.
- Tucatinib AUC_{inf} and C_{max} both increased 1.3-fold in the presence of itraconazole, a strong CYP3A inhibitor.
- Tucatinib AUC_{inf} and C_{max} decreased by 48% and 37%, respectively, in the presence of rifampin, a strong CYP3A and CYP2C8 inducer.
- Together, this data shows tucatinib clearance in humans to be predominantly mediated by CYP2C8 and to a lesser extent by CYP3A.

Table 2: Summary of Tucatinib (300 mg, SD) C_{max} and AUC_{inf} Ratios in the Presence vs. Absence of Strong CYP3A and **CYP2C8** Inhibitors and Inducer

Concomitant Drug (Dose)	Geometric Mean Ratio (90% CI) of Exposure Measures of Tucatinib Combination/No Combination			
-	C _{max}	AUC _{inf}		
CYP3A Inhibition				
Itraconazole (200 mg BID,D2; QD D3-5)	1.32 (1.23, 1.42)	1.34 (1.26, 1.43)		
<u>CYP3A/2C8 Induction</u> Rifampin (600 mg QD)	0.632 (0.531, 0.753)	0.520 (0.452, 0.597)		
<u>CYP2C8 Inhibition</u> Gemfibrozil (600 mg BID)	1.62 (1.47, 1.79)	3.04 (2.66, 3.46)		

BID = twice daily; QD = once daily C_{max} = maximum concentration; AUC = area under the curve; SD = single dose

Impact of Tucatinib on CYP3A, CYP2C8 and **P-gp Substrate PK**

Figure 4: Plasma concentration profiles of (A) repaglinide, (B) midazolam, (C) tolbutamide or (D) digoxin in the absence and presence of steady-state tucatinib.

Impact of Tucatinib on CYP3A, CYP2C8 and P-gp Substrate PK (Cont.)

Tucatinib is a Strong CYP3A Inhibitor in Humans

Tolbutamide Tolbutamide + TUC

Figure 5: AUC_{inf} values of (A) repaglinide, (B) midazolam, (C) tolbutamide or (D) digoxin in the absence and presence of steady-state tucatinib.

- The exposures of midazolam, repaglinide, and digoxin increased in the presence of tucatinib.
 - Midazolam AUC_{inf} and C_{max} increased 5.7-fold and 3.1-fold, respectively.
 - Repaglinide and digoxin AUC_{inf} increased 1.7-fold and 1.5-fold, respectively.
- There was no change in tolbutamide exposure in the presence of tucatinib.
- Together, these data show tucatinib to be a strong CYP3A inhibitor and a weak CYP2C8 and P-gp inhibitor.

Table 3: Summary of C_{max} and AUC_{inf} Ratios of Sensitive CYP3A, CYP2C8, CYP2C9 and P-gp Substrates in the Presence vs. Absence of Tucatinib (300 mg BID)

Concomitant Drug (Dose)	Geometric Mean Ratio (90% CI) of Exposure Measures of Combination With/Without Tucatinib			
	C _{max}	AUC		
<u>CYP2C8 Substrate</u>	1.69	1.69		
Repaglinide (0.5 mg SD)	(1.37, 2.10)	(1.51, 1.90)		
<u>CYP3A4 Substrate</u>	3.01	5.74		
Midazolam (2 mg SD)	(2.63, 3.45)	(5.05, 6.53)		
<u>CYP2C9 Substrate</u>	0.961	1.05		
Tolbutamide (500 mg SD)	(0.904, 1.02)	(1.01, 1.09)		
P-gp Substrate	2.35	1.46		
Digoxin (0.5 mg SD)	(1.90, 2.90)	(1.29, 1.66)		

AUC= area under the curve; Cmax = maximum serum concentration; CYP3A= cytochrome P450 3A; CYP2C8 = cytochrome P450 2C8; CYP2C9 = cytochrome P450 2C9; P-gp= P-glycoprotein

Tucatinib Safety Profile in Healthy Volunteers

- All TEAEs were considered mild or moderate (Grade 1 or 2) in severity.
- The most frequently reported TEAEs considered related to TUC, as determined by the investigator, were increased blood creatinine and increased ALT.
- Post-dose serum creatinine elevations were reported but were determined to be due to a drug-drug interaction at the kidney transport level, and did not represent acute kidney injury. Serum creatinine levels returned to baseline upon discontinuing tucatinib.

Table 4: TUC-Related TEAEs of Clinical Interest in ≥2 Patients in the Total Study Population

	_	Part A N=28	Part B N=28	Part C N=28	Part D N=17	Part E N=13
- TEAE / Grade				n (%)		
All TEAEs Related to TUC	G1	1 (3.6)	3 (10.7)	2 (7.1)	2 (11.8)	7 (53.8)
	G2			1 (3.6)	1 (5.9)	1 (7.7)
Diarrhea	G1/G2	1 (3.6)				1 (7.7)
Blood Creatinine Increased	G1/G2		1 (3.6)		1 (5.9)	5 (38.5)
ALT Increased	G1/G2				1 (5.9)	4 (30.8)
AST Increased	G1/G2					2 (15.4)
Blood Bilirubin Increased	G1/G2		1 (3.6)			
G = Grade						

Conclusions

- Tucatinib at therapeutic doses was well-tolerated in healthy volunteers.
- Together, these data indicate tucatinib is metabolized primarily by CYP2C8 and to a lesser extent via CYP3A.
- Tucatinib was found to be a strong inhibitor of CYP3A, a weak inhibitor of CYP2C8 and P-gp, and had no impact on CYP2C9mediated metabolism in humans.

Clinical implications include:

- Avoiding concomitant use of strong CYP2C8 inhibitors with tucatinib; if concomitant use cannot be avoided, reduce tucatinib dose to 100 mg BID
- Avoiding concomitant use of tucatinib with a strong CYP3A inducer or moderate CYP2C8 inducer.
- Avoiding concomitant use of tucatinib with CYP3A substrates. If concomitant use cannot be avoided, decrease the CYP3A substrate dosage in accordance with approved product labeling.
- Consider reducing the dose of P-gp substrates, where minimal concentration changes may lead to serious or life-threatening toxicities.

DISCLOSURES: ATE, AL, HS, JM, LW, CJE are employees of Seattle Genetics, Inc.

Contact: Ariel Topletz-Erickson (atopletz@seagen.com)

